Graph Implementation

- 1. How do we represent a graph via an *adjacency matrix*?
 - (a) How does this provide us with convenient storage of node- and/or edge-weights?
 - (b) In general, what affects whether an adjacency matrix a better or worse choice?
- 2. How do we represent a graph via *adjacency lists*?
 - (a) In general, what affects whether an adjacency list a better or worse choice?
- 3. Write out matrix and adjacency-list representations for each of the following graphs, and compare:

Graph Applications

- 4. What is a *trie*, and what purpose does a trie serve?
 - (a) Form a trie for the (spelled-out) numbers from zero to thirteen in a tree, and envision what text-completion would look like with this trie.
 - (b) Think about tries next time you get auto-completion from a device!
- 5. How does *Huffman encoding* work for data, and what makes it useful?

(a) Given the frequency data to the right for the letters in American English, find the associated Huffman encoding	E 12.02	D 4.32	P 1.82
American English, mid the associated Humman cheoding.	1 9.10	L 3.9	D 1.49
(b) Count up the total bits used to encode	A 8.12	0.2.88	V 1.11
these letters via your encoding above.	O 7.68	C 2.71	${ m K}\ 0.69$
	I 7.31	M 2.61	X 0.17
How did it do, relative to, say, 5 bits per letter?	N 6.95	F 2.30	Q 0.11
(c) Will this encoding work well for all sets of words?	S 6.28	Y 2.11	J 0.10
Why or why not?	R 6.02	W2.09	$Z \ 0.07$
Willy Of Willy 100:	H 5.92	G 2.03	

6. What is a *Markov chain*?

- (a) How can we represent a Markov chain by an edge-weighted digraph? What are the rules for the edge-weights, and why?
- (b) Briefly explain MCMC (Markov Chain Monte Carlo) as a computational means of helping to understand a large Markov chain.
- (c) Draw an edge-weighted digraph for the following super-simplified flow of a basketball [or soccer/hockey/lacrosse] game:

States: (1) Team A has the ball	(2) Team B has the ball
(3) Team A scores	(4) Team B scores

Transitions: When either team has the ball, 40% of the time they score, 20% of the time they miss but recover the ball, and 40% of the time, the other team gets the ball via a rebound or turnover.

After a team scores, the other team gets the ball 100% of the time.